
Prof. Ren-Song Tsay September 11, 2018

Chapter 1 — Computer Abstractions and Technology 1

2018/9/11 © Ren-Song Tsay, NTHU, Taiwan 9

3.3

The Queue
Abstract Type

Queue

 A queue is an ordered list in which

insertions (or called additions or pushes)

and deletions (or called removals or

pops) are made at different ends.

 New elements are inserted at rear end.

 Old elements are deleted at front end.

10

insertion deletion

rear front

Queue Operations

 Insert a new element into queue

◦ f: front position

◦ r: rear position

Insert

A

11

-1

r f

A

r f

Insert

B

B A

r f

Insert

C

C B A

r f

Prof. Ren-Song Tsay September 11, 2018

Chapter 1 — Computer Abstractions and Technology 2

Queue Operations

 Delete an old element from queue

◦ f: front position

◦ r: rear position

12

C

r f

Delete

C B

r f

Delete

C B A

r f

Problems

 What happen if rear == capacity-1 ?

 Add more space ? wasted

 Shift right? Codes are complicated…

13

J I H G …

r f

J I H G …

r f

. . . J I H G

r f

Circular Queue

B

C D

B

C D

A

B

C

A

front front

front

rearrearrear

Initial Insertion Deletion

rear = (rear+1) % capacity;

14

front = (front+1) % capacity;

Prof. Ren-Song Tsay September 11, 2018

Chapter 1 — Computer Abstractions and Technology 3

When is the Queue Empty?

 rear == front ? NO!

front

rear

B

C D

A

front

rear

E

F

GH

Queue is empty Queue is full

Allocate extra space before the queue is full

15

Queue: ADT
template < class T >
class Queue // A finite ordered list
{
public:

// Constructor
Queue (int queueCapacity = 10);

// Check if the stack is empty

bool IsEmpty () const;

// Return the front element
T& Front () const;

// Return the rear element
T& Rear () const;

// Insert a new element at rear
void Push (const T& item);

// Delete one element from front
void Pop ();

private:
T* queue;
int front, rear; // init. value = -1
int capacity;

};
16

Queue Operations

template < class T >

void Queue < T >::IsEmpty() const { return front==rear; }

template < class T >

T& Queue < T >::Front() const {

if(IsEmpty()) throw “Queue is empty!”;

return queue[(front+1)%capacity];

}

template < class T >

T& Queue < T >::Rear() const {

if(IsEmpty()) throw “Queue is empty!”;

return queue[rear];

}

17

Prof. Ren-Song Tsay September 11, 2018

Chapter 1 — Computer Abstractions and Technology 4

Queue Operations: Push & Pop

template < class T >

void Queue< T >::Push (const T& x)

{ // Add x at rear of queue

if((rear+1)%capacity == front)

{

// queue is going to full, double the capacity!

}

rear = (rear+1)%capacity;

queue [rear] = x;

}

template < class T >

void Queue < T >::Pop ()

{ // Delete front element from queue

if(IsEmpty()) throw “Queue is empty. Cannot delete.”;

front = (front+1)%capacity;

queue[front].~T(); // Delete the element

}

18

Doubling Queue Capacity

19

B

C D

A

front = 5
rear = 4

E

F

G

Full circular queue

queue [0] [1] [2] [3] [4] [5] [6] [7]

C D E F G A B

front = 5, rear = 4

Expanded full circular queue

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

C D E F G A B

front = 5, rear = 4

Doubling the array

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

C D E F G A B

front = 13, rear = 4

Scenario 1: After shifting right segment

Doubling Queue Capacity

B

C D

A

front = 5
rear = 4

E

F

G

Full circular queue

queue [0] [1] [2] [3] [4] [5] [6] [7]

C D E F G A B

front = 5, rear = 4

Expanded full circular queue

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

C D E F G A B

front = 5, rear = 4

Doubling the array

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

A B C D G F G

front = 15, rear = 6

Scenario 2: Alternative configuration

20

