Prof. Ren-Song Tsay September 11, 2018

Queue

* A queue is an ordered list in which
insertions (or called additions or pushes)
and deletions (or called removals or
pops) are made at different ends.

* New elements are inserted at rear end.

» Old elements are deleted at front end.

insertion. *deletion

rear front

Queue Operations ‘

¢ Insert a new element into queue
> f:front position

° r:rear position

Insert Insert Insert
Do Do
el e et * &

Chapter 1 — Computer Abstractions and Technology

Prof. Ren-Song Tsay

Queue Operations ‘

¢ Delete an old element from queue
> f: front position
° r:rear position

||» ‘ Delete ‘ ||» Delete‘
f w ek

L

September 11, 2018

Problems

* What happen if rear == capacity-1 ?

= f
¢ Add more space ? wasted

L f

« Shift right? Codes are complicated. ..

L f

Circular Queue ‘

rear rear rear

MR NS
DOV OvEvSy

front

front front| £ront = (front+l) % capacity; ‘
Initial Insertion Deletion
rear = (rear+l) % capacity; ‘

Chapter 1 — Computer Abstractions and Technology

Prof. Ren-Song Tsay

When is the Queue Empty?

e rear == front ? NO!

rear rear
front front

PRAIDA

Queue is empty Queue is full

Allocate extra space before the queue is full

September 11, 2018

Queue: ADT

template < class T >
class Queue // A finite ordered list

{
public:
// Constructor
Queue (int queueCapacity = 10);

// Check if the stack is empty
bool IsEmpty () const;

// Return the front element
T& Front () const;

// Return the rear element
T& Rear () const;

// Insert a new element at rear
void Push (const T& item);

// Delete one element from front
void Pop ()

private:
T* queue;
int front, rear; // init. value = -1
int capacity;

Queue Operations

template < class T >
void Queue < T >::IsEmpty() const { return front==rear; }

template < class T >

T& Queue < T >::Front() const {
if (IsEmpty()) throw “Queue is empty!”;
return queue[(front+l) $capacity];

}

template < class T >

T& Queue < T >::Rear() const {
if (IsEmpty()) throw “Queue is empty!”;
return queue[rear];

}

Chapter 1 — Computer Abstractions and Technology

Prof. Ren-Song Tsay

Queue Operations: Push & Pop ‘

{

}

template < class T >
void Queue< T >::Push (const T& x)

// Add x at rear of queue
if ((rear+l)%capacity == front)
{
// queue is going to full, double the capacity!

}
rear = (rear+l)%capacity;

queue [rear] = x;

{

template < class T >
void Queue < T >::Pop ()

// Delete front element from queue
if (IsEmpty()) throw “Queue is empty. Cannot delete.”;
front = (front+l)%capacity;

September 11, 2018

queue[front] .~T(); // Delete the element

Doubling Queue Capacity

Cle
%.3 queue [g] [IID] [é] [i] [(43] [51 [Z] [;]
‘p front=5,rear =4

rear=4 Expanded full circular queue
front=5
Full circular queue

[01 [11 [2] [31 [4]1 [51 [6]1 [7] [8] [9] [lo] [11] [12] [13] [14] [I5]
c D = F G A B

front = 5,rear =4
Doubling the array

[01 ['1 [2]1 [31 [41 [51 [61 [71 [81 [91 [io1 [11] [12] [13]1 [14] [151
C D E F G A B

front = I13,rear = 4
Scenario |:After shifting right segment

Doubling Queue Capacity

queue [0] [1] [2] [3]1 [4] [51 [6] [7]
CcC D El F G A B

front =5,rear =4

Expanded full circular queue
front=5
Full circular queue

[01 ['1 [2] [3]1 [4]1 [51 [61 [71 [8] [9] (101 (111 [12] [13] [14] [I15]
C D E F G A B

front = 5,rear = 4
Doubling the array

[01 ['1 [2] [3] [4]1 [51 [6] [7] [8] [9] (101 (111 [12] [13] [14] [15]
A B C D G F G

front = I5,rear = 6
Scenario 2:Alternative configuration

Chapter 1 — Computer Abstractions and Technology

