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3.3

The Queue 
Abstract Type

Queue

 A queue is an ordered list in which 

insertions (or called additions or pushes) 

and deletions (or called removals or 

pops) are made at different ends.

 New elements are inserted at rear end.

 Old elements are deleted at front end.
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Queue Operations

 Insert a new element into queue

◦ f: front position

◦ r: rear position
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Queue Operations

 Delete an old element from queue

◦ f: front position

◦ r: rear position
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Problems

 What happen if rear == capacity-1 ?

 Add more space ? wasted

 Shift right? Codes are complicated…
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Circular Queue
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Initial Insertion Deletion

rear = (rear+1) % capacity;
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front = (front+1) % capacity;
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When is the Queue Empty?

 rear == front ? NO!
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Queue is empty Queue is full

Allocate extra space before the queue is full
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Queue: ADT
template < class T >
class Queue // A finite ordered list
{ 
public:

// Constructor
Queue (int queueCapacity = 10);

// Check if the stack is empty

bool IsEmpty ( ) const;

// Return the front element
T& Front ( ) const;

// Return the rear element
T& Rear ( ) const;

// Insert a new element at rear
void Push (const T& item);

// Delete one element from front
void Pop ( );

private:
T* queue;
int front, rear; // init. value = -1
int capacity;

};
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Queue Operations

template < class T >

void Queue < T >::IsEmpty() const { return front==rear; }

template < class T >

T& Queue < T >::Front() const {

if(IsEmpty()) throw “Queue is empty!”;

return queue[(front+1)%capacity];

}

template < class T >

T& Queue < T >::Rear() const {

if(IsEmpty()) throw “Queue is empty!”;

return queue[rear];

}
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Queue Operations: Push & Pop

template < class T >

void Queue< T >::Push (const T& x)

{ // Add x at rear of queue

if((rear+1)%capacity == front)

{

// queue is going to full, double the capacity!

}

rear = (rear+1)%capacity;

queue [rear] = x;

}

template < class T >

void Queue < T >::Pop ( )

{ // Delete front element from queue

if(IsEmpty()) throw “Queue is empty. Cannot delete.”;

front = (front+1)%capacity;

queue[front].~T(); // Delete the element

}
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Doubling Queue Capacity
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Full circular queue

queue [0] [1] [2] [3] [4] [5] [6] [7]

C D E F G A B

front = 5, rear = 4

Expanded full circular queue

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

C D E F G A B

front = 5, rear = 4

Doubling the array

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

C D E F G A B

front = 13, rear = 4

Scenario 1: After shifting right segment

Doubling Queue Capacity
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Full circular queue

queue [0] [1] [2] [3] [4] [5] [6] [7]

C D E F G A B

front = 5, rear = 4

Expanded full circular queue

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

C D E F G A B

front = 5, rear = 4

Doubling the array

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

A B C D G F G

front = 15, rear = 6

Scenario 2: Alternative configuration
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