
Prof. Ren-Song Tsay September 11, 2018

Chapter 1 — Computer Abstractions and Technology 1

2018/9/11 © Ren-Song Tsay, NTHU, Taiwan 9

3.3

The Queue
Abstract Type

Queue

 A queue is an ordered list in which

insertions (or called additions or pushes)

and deletions (or called removals or

pops) are made at different ends.

 New elements are inserted at rear end.

 Old elements are deleted at front end.

10

insertion deletion

rear front

Queue Operations

 Insert a new element into queue

◦ f: front position

◦ r: rear position

Insert

A

11

-1

r f

A

r f

Insert

B

B A

r f

Insert

C

C B A

r f

Prof. Ren-Song Tsay September 11, 2018

Chapter 1 — Computer Abstractions and Technology 2

Queue Operations

 Delete an old element from queue

◦ f: front position

◦ r: rear position

12

C

r f

Delete

C B

r f

Delete

C B A

r f

Problems

 What happen if rear == capacity-1 ?

 Add more space ? wasted

 Shift right? Codes are complicated…

13

J I H G …

r f

J I H G …

r f

. . . J I H G

r f

Circular Queue

B

C D

B

C D

A

B

C

A

front front

front

rearrearrear

Initial Insertion Deletion

rear = (rear+1) % capacity;

14

front = (front+1) % capacity;

Prof. Ren-Song Tsay September 11, 2018

Chapter 1 — Computer Abstractions and Technology 3

When is the Queue Empty?

 rear == front ? NO!

front

rear

B

C D

A

front

rear

E

F

GH

Queue is empty Queue is full

Allocate extra space before the queue is full

15

Queue: ADT
template < class T >
class Queue // A finite ordered list
{
public:

// Constructor
Queue (int queueCapacity = 10);

// Check if the stack is empty

bool IsEmpty () const;

// Return the front element
T& Front () const;

// Return the rear element
T& Rear () const;

// Insert a new element at rear
void Push (const T& item);

// Delete one element from front
void Pop ();

private:
T* queue;
int front, rear; // init. value = -1
int capacity;

};
16

Queue Operations

template < class T >

void Queue < T >::IsEmpty() const { return front==rear; }

template < class T >

T& Queue < T >::Front() const {

if(IsEmpty()) throw “Queue is empty!”;

return queue[(front+1)%capacity];

}

template < class T >

T& Queue < T >::Rear() const {

if(IsEmpty()) throw “Queue is empty!”;

return queue[rear];

}

17

Prof. Ren-Song Tsay September 11, 2018

Chapter 1 — Computer Abstractions and Technology 4

Queue Operations: Push & Pop

template < class T >

void Queue< T >::Push (const T& x)

{ // Add x at rear of queue

if((rear+1)%capacity == front)

{

// queue is going to full, double the capacity!

}

rear = (rear+1)%capacity;

queue [rear] = x;

}

template < class T >

void Queue < T >::Pop ()

{ // Delete front element from queue

if(IsEmpty()) throw “Queue is empty. Cannot delete.”;

front = (front+1)%capacity;

queue[front].~T(); // Delete the element

}

18

Doubling Queue Capacity

19

B

C D

A

front = 5
rear = 4

E

F

G

Full circular queue

queue [0] [1] [2] [3] [4] [5] [6] [7]

C D E F G A B

front = 5, rear = 4

Expanded full circular queue

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

C D E F G A B

front = 5, rear = 4

Doubling the array

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

C D E F G A B

front = 13, rear = 4

Scenario 1: After shifting right segment

Doubling Queue Capacity

B

C D

A

front = 5
rear = 4

E

F

G

Full circular queue

queue [0] [1] [2] [3] [4] [5] [6] [7]

C D E F G A B

front = 5, rear = 4

Expanded full circular queue

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

C D E F G A B

front = 5, rear = 4

Doubling the array

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

A B C D G F G

front = 15, rear = 6

Scenario 2: Alternative configuration

20

